

YEAR 10 SCIENCE EXAMINATION

KINROSS COLLEGE

Semester 1 2016

Question and Answer Booklet

STUDENT NAME:	
TEACHER:	
DATE:	

Time allowed for this paper:

1 hour and 30 minutes

Materials required: Pens, pencils, eraser, ruler, calculator

Marks received					
MultipleMolecularEnergy andInvestigatingTotalChoiceTheoryMotion					
(25)	(47)	(43)	(11)	(126)	

helium 2 HG		Ar 18 18	39.948 krypton 36	S4 S4 Xenon	131.29 radon 86 82 2221			
	an a	11.998 chlorine 17	35.453 bromine 35 35 70 001		astatine 85 At			
5	oxygen 8 0	15.999 sulfur 16 0.00	32.005 Selenium 34 Se	tellurium 52 Te	127.60 polonium 84 84 12091		ytterbium 70	Yb 173.04 102 102 No
	nitrogen 7 N	14.007 phosphorus 15 D	30.974 arsenic 33 AS	s1 Sb	121.76 bismuth 83 83 208.98		thulium 69	Tm 168:93 Tot 101 Z58]
Į.	6 6	12.011 silicon 14 Si	germanium 32 32 32 32	Sn Sn	118.71 lead 82 82 207.2	ununquadium 114 Uuq	erbium 68	Erneium 167.26 1600 100 257]
l.	5 D	10.811 aluminium 13 A	gallium 31 33	149 49 In	114.82 thallium 81 204.38		holmium 67	Ho 164.93 einsteinium 99 ES
l.			200 zinc 20 65 20	cadmium 48 Cd	80 200.59	Uub 112 Uub	dysprosium 66	Cf 2550 261 2551 2551 2551
r L			copper 29 CU	47 Ag	107.87 gold 79 AU	Unununium 111 UUU	terbium 65	Tb 158.93 berkelium 97 97 BK
8			nickel 28 N	palladium 46 Pd	106.42 platinum 78 78 195.08	Ununullium 110 Uun	gadolinium 64	Gd 157.25 curium 96 CM 247
			cobalt 27 CO	45 Rh	102.91 Iridium 77 192.22	neitherlum 109 Mt [268]	europium 63	Eu 151.96 americium 95 243
12			iron 26 РС 58.845	ruthenium 44 Ru	101.07 osmium 76 0S	108 108 HS	samarium 62	Sm 150.36 plutonium 94 244
			manganese 25 Mn	technetium 43 TC	^[98] rhenium 75 75 186.21	107 107 Bh [264]	promethium 61	Partition B 1237 237 237
C.			chromium 24 Cr	molybdenum 42 No	95.94 tungsten 74 183.84	SG 266	neodymium 60	Nd uranium 92 238.03
C.			vanadium 23 V	41 A1 Nb	92.906 tantalum 73 73 180.95	dubnium 105 Db	praseodymium 59	Protactinium 91 231.04
			11tanium 22	zirconium 40 Zr	91.224 hafnium 72 178.49	rutherfordium 104 Rf [261]	certum 58	Ce ^{140.12} ^{140.12} ^{140.12} ^{140.12} ^{140.12}
C.			scandium 21 SC	39 39	88.906 Iutetium 71 174.97	lawrencium 103 L r [262]	lanthanum 57	AC B B B B B B B B B B B B B B B B B B B
					57-70 *	89-102	001100	eries
1	beryllium 4 Be	9.0122 nagnesium 12 Ng	200 calcium 20 20 20 20 20 20 20 20 20 20 20 20 20 2	stontium 38 Sr	87.62 bartum 56 137.33	88 88 256		inide se
hydrogen	Ithium 3 3	11 11 11 11 11 11	19	37 37 88	85.468 caesium 55 CS 132.91	Franctum 87 Fr [223]	****	* * Act

MOLECULAR THEORY

There is a Periodic Table attached to your exam paper. You may use it to help you answer the questions in this section.

- **1.** Look at Group I in your periodic table.
 - **a.** Write 3 elements that belong to this group.

1 Mark

b. Give **two** properties of the elements in this group.

2 Marks

c. Does the reactivity of the Group I elements increase or decrease as you go down the group?

1 Mark

2. a. Atoms are the smallest particles that can still be identified as a specific substance, however, atoms themselves are made from three types of even smaller particles. What are the three types of smaller particles called?

2. **b.** Label the diagram below with the names of the particles from your answer to part a.

3 Marks

- **c.** For the atom in the diagram above, what is its:
 - (i) atomic number?
 - (ii) mass number?
 - (iii) name?

3. Below is a diagram of an atom of lithium:

Draw similar diagrams for:

a. Boron

3 Marks

b. Flourine

3 Marks

c. Sodium

4. Atoms join together through the formation of **bonds**. The table below has various descriptions of bonds. Write the correct bond type (either **ionic or covalent**) to match the description. You may use each type more than once.

Bond type	Description		
	Electrons are shared between atoms.		
	Formed between atoms of non-metals		
	Formed when a metal atom bonds with a non-metal atom		
	Electrons are transferred from one atom to another		
	Oppositely charged ions are attracted to each other		

5 Marks

5. The table below contains the valencies of some common ions:

Name	Symbol	Valency	Name	Symbol	Valency
Hydrogen	Н	+1	Fluorine	F	-1
Sodium	Na	+1	Chlorine	Cl	-1
Ammonium	NH_4	+1	lodine	I	-1
Magnesium	Mg	+2	Hydroxide	ОН	-1
Calcium	Ca	+2	Oxygen	0	-2
Aluminium	Al	+3	Sulphur	S	-2
Iron	Fe	+3	Sulphate	SO ₄	-2
			Carbonate	CO ₃	-2
			Nitrogen	N	-3

Write the formula for the following substances:

a.	Sodium Chloride	1 Mark

- b. Sulphuric acid (hydrogen sulphate) _____1 Mark
- c. Ammonium carbonate ______1 Mark
- d. Calcium hydroxide ______1 Mark)

Predict the name and formula of the substance formed when:

e. Sodium reacts with fluorine

f. Magnesium reacts with iodine

2 Marks

g. Aluminium reacts with oxygen

2 Marks

- **6.** Write word, symbol and balanced symbol equations for the following reactions:
- a. Hydrogen (H_2) burns in oxygen (O_2) to form water (H_2O) :

Word:

Symbol:

Balanced:

b. Ethane (C_2H_6) burns in oxygen (O_2) to produce carbon dioxide (CO_2) and water (H_2O) :

Word:

Symbol:

Balanced:

6 Marks

ENERGY AND MOTION

7. Scalar quantities only have a magnitude (size), while vector quantities have a magnitude and a direction. Place the following quantities into the correct column in the table:

Mass; speed; velocity; displacement; weight; distance

Scalar quantity	Vector quantity

8. Below are 3 distance-time graphs:

Underline the correct description for each graph:

Graph a shows an object that is speeding up/ slowing down/ traveling at a steady speed.

Graph b shows an object that is speeding up/ slowing down/ traveling at a steady speed.

Graph c shows an object that is speeding up/ slowing down/ traveling at a steady speed. 3 Marks

9. Ben and Jordan went out cycling one day. The graph below shows how far they traveled during the ride.

a. How far did they travel in total?

b.	For how long were they cycling before they stopped?	
----	---	--

		1 Mark
c.	Between which two points did they travel fastest?	
		1 Mark
d.	How can you tell this from the graph?	
		1 Mark
e.	For how long did they stop for lunch?	
		1 Mark

10. The following questions are based on the motion equations:

v=s/t	s=vt	t=s/v
a=(v-u)/t	v=u+at	t=(v-u)/a
s=(ut)+(0.5at ²)	when u=0: $t = \sqrt{\frac{2s}{a}}$	a=2s/t ²

Where:

v = final velocity s = displacement t = time a = acceleration
u = initial velocity
if something is falling, then acceleration = 9.8 m/s/s

Show all your working. You will be awarded:

- 1 mark for identifying the information you've been given,
- 1 mark for picking the correct equation,
- 1 mark for getting the right answer and
- 1 mark for giving the correct unit.

a. A car travels 100km in 2 hours. What is its velocity?

4 Marks

b. If a motorbike is traveling at 25m/s and accelerates at 5m/s/s for 3s, what is its final velocity?

c. Terry is fixing a broken tile on his roof when he falls off. If it takes him 1s to hit the ground, how high was his roof?

4 Marks

11. The following questions are also based on the motion equations given in question 10. However, to work out the answer you will need to use 2 of the equations. Your answer to the first equation is required in the second equation.

Show all your working. You will be awarded:

- 1 mark for identifying the information you've been given,
- 2 marks for picking the correct equation,
- 2 marks for getting the right answer and
- 2 marks for giving the correct unit.
- **a.** A train accelerates from 20m/s to 40m/s in 10s. How far did it travel during this acceleration?

- **12.** The information below can be used to answer the questions that follow.
 - Energy cannot be created or destroyed, only changed from one form to another
 - Gravitational potential energy = mass x gravity x height
 - Kinetic energy = ½ x mass x velocity x velocity
 - Velocity = square root of 2 x KE / mass
 - Acceleration due to gravity = 9.8 m/s/s

Show all your working. You will be awarded:

- 1 mark for picking the correct equation,
- 1 mark for getting the right answer and
- 1 mark for giving the correct unit.

Kim weighs 75kg. He dives from a 10m diving board.

a. How much gravitational potential energy does he have when he is standing on the board waiting to dive?

- **b.** When he has fallen 1 metre:
- (i) How much gravitational potential energy does he have now?

3 Marks

(ii) How much kinetic energy does he have?

3 Marks

(iii) What is his velocity?

INVESTIGATING

13. You have been asked to plan an investigation to see if the type of surface a ball is dropped onto will affect how high the ball bounces.

a. (i) What variable will you change (independent) in this experiment?

1 Mark

(ii) What variable will you measure (dependent) in this experiment?

1 Mark

(iii) List 2 variables you will **keep the same (controlled)** to ensure it is a fair test?

2 Marks

b. (i) Calypso is also doing this experiment. She plans to drop a ball onto concrete, carpet and sand. What effect do you expect these different surfaces to have on the height her ball bounces? Using the word energy, explain why you think this will happen.

14. John carried out a similar experiment, but he was investigating how the height a ball was dropped from affected the height of its bounce. He used the same golf ball for all his experiments and used a metre ruler to measure heights:

Here is a table of his results:

		m)			
	20 60 100				
Height of Bounce (cm)	15	45	40		

a. Suggest a way in which John's experiment could have been improved.

1 Mark

a. One of John's results doesn't fit into the pattern you might expect for this experiment. Say which one it is and explain your choice.

3 Marks

End of question paper